<u>タッチパネル_CTC-77</u> 画面プログラミングガイド

Document No. DEE-02052

<u>Ver. 1.00</u> 2013 / 7 / 3

目次

☆はじめに (4P)

☆CTC77_タッチパネル の信号説明 <基本編> (4P)

- ① CTC77 プログラミングの起動と停止(4P)
- ② CTC77 プログラミングの選択 (5P)
- ③ CTC77 関連するモニタ(6P)
 ○プログラムの起動/停止 確認ランプ "M289"
 ○CTC77 プログラム実行中の工程 "D20"
 ○プログラムサイクル数 "D85 "
- ④ CTC77 の Input / Output の ON/OFF 表示 (7P)
- ⑤ アクチュエータ動作に関わる信号 (9P)
 - (1) 軸選択 "D16"(9P)
 - (2) 原点復帰(10P)
 - (3) ポイント動作 (11P)
 - (4) JOG 操作(12P)
 - (5) ポイント編集(13P)
 ○ポイント選択
 ○位置(15P)
 ○現在位置反映(16P)
 ○絶対位置/相対位置 切替(17P)
 ○速度(18P)
 ○加速度(19P)
 ○押付(20P)
- ⑥ シリンダ/モータの状態信号 (22P)
- ⑦ アラームに関わる信号 (24P)
 CTC_アラームコード (25P)
 シリンダ/モータアラームコード (26P)

☆CTC77_タッチパネルの信号説明 <応用編>

- ① 画面に全軸の現在位置データを表示させたい場合(27P)
- ② 単位切替 (27P)
- ③ 拡張ページの有効/無効の確認(28P)
- ④ 拡張ページによる位置データの変更方法例 (29P)
 拡張ページについて(30P)
- ⑤ 途中続行の有効/無効の確認(31P)途中続行機能について
- ⑥ CTC プログラムが動作していない状態で OUT 信号の確認を行う場合(32P)
- ⑦ 遅延タイマについて (33P)
- ⑧ CTC のプログラムを連続で起動させたい場合(34P)

☆はじめに

タッチパネル画面の基本信号は三菱の計算機リンク A をベースに作成しています。 ビット信号はM/ワード信号はD で取扱しています。 ビット信号は全て モーメンタリ設定にしてください。 信号速度が設定できる場合は ワードモニタ以外は 低速 にしてください。 (画面呼び出し時だけでいい場合は、リフレッシュにしてください。) 説明に使用している画像は松下製のGT32です。

ビット信号 M は全てモーメンタリ設定です。

☆CTC77_タッチパネルの信号説明 <基本編>

① CTC77 プログラミングの起動と停止

タッチパネルの画面に起動ボタンと停止ボタンを配置します。

○停止ボタン" M51 "

○起動ボタン"M50" CTC77のプログラムを起動します。 CTC77の起動中のプログラムを停止します。

画面構成パーツ

名称	信号	属性	設定
START	M50	スイッチ	モーメンタリ
STOP	M51	スイッチ	モーメンタリ

プログラム選択" D15" に数値を入力します。 16 進数入力にて 0~F を入力してください。 数値入力後起動ボタン" M50" を押すと D15 に入力した値に従って プログラミングが起動します。

名称	信号	属性	設定
START	M50	スイッチ	モーメンタリ
STOP	M51	スイッチ	モーメンタリ
プログラム選択	D15	数值選択	表示桁数 1 / HEX(1W)

③ CTC77 関連するモニタ

○プログラムの起動/停止 確認ランプ "M289"

CTC77 プログラム起動中 ON

CTC77 プログラム停止中 OFF

○CTC77 プログラム実行中の工程 "D20"

CTC77 プログラム実行時の 工程番号表示

○プログラムサイクル数 "D85"

電源を投入してからプログラムを実行した回数を表示します。

"M59"を押すとリセットします。

また電源を遮断するとリセットします。

名称	信号	属性	設定
START	M50	スイッチ	モーメンタリ
STOP	M51	スイッチ	モーメンタリ
プログラム選択	D15	数值入力	表示桁数 1 / HEX(1W)
実行中の工程	D20	数値モニタ	表示桁数 3 / DEC(1W 符号なし)
カウンタ	D85	数値モニタ	表示桁数 4 / DEC(2W 符号なし)
クリア	M59	スイッチ	モーメンタリ
起動確認	M289	ランプ	

 ④ CTC77の Input / Output の ON/OFF 表示 動作中/停止中ともにモニタし続けます。

名称	信号	属性	内容
INPUT0	M256	ランプ	INPUT 0 の ON/OFF を表示
INPUT1	M257	ランプ	INPUT 1 の ON/OFF を表示
INPUT2	M258	ランプ	INPUT 2 の ON/OFF を表示
INPUT3	M259	ランプ	INPUT 3 の ON/OFF を表示
INPUT4	M260	ランプ	INPUT 4 の ON/OFF を表示
INPUT5	M261	ランプ	INPUT 5 の ON/OFF を表示
INPUT6	M262	ランプ	INPUT 6 の ON/OFF を表示
INPUT7	M263	ランプ	INPUT 7 の ON/OFF を表示
INPUT8	M264	ランプ	INPUT 8 の ON/OFF を表示
INPUT9	M265	ランプ	INPUT 9 の ON/OFF を表示
INPUTA	M266	ランプ	INPUT A の ON/OFF を表示
INPUTB	M267	ランプ	INPUT B の ON/OFF を表示
INPUTC	M268	ランプ	INPUT C の ON/OFF を表示
INPUTD	M269	ランプ	INPUT D の ON/OFF を表示
INPUTE	M270	ランプ	INPUT E の ON/OFF を表示
INPUTF	M271	ランプ	INPUT F の ON/OFF を表示
OUTPUT 0	M272	ランプ	OUTPUT 0 の ON/OFF を表示
OUTPUT 1	M273	ランプ	OUTPUT 1 の ON/OFF を表示
OUTPUT 2	M274	ランプ	OUTPUT 2 の ON/OFF を表示
OUTPUT 3	M275	ランプ	OUTPUT 3 の ON/OFF を表示
OUTPUT 4	M276	ランプ	OUTPUT 4 の ON/OFF を表示
OUTPUT 5	M277	ランプ	OUTPUT 5 の ON/OFF を表示
OUTPUT 6	M278	ランプ	OUTPUT 6 の ON/OFF を表示
OUTPUT 7	M279	ランプ	OUTPUT 7 の ON/OFF を表示
OUTPUT 8	M280	ランプ	OUTPUT 8 の ON/OFF を表示
OUTPUT 9	M281	ランプ	OUTPUT 9 の ON/OFF を表示
OUTPUT A	M282	ランプ	OUTPUT A の ON/OFF を表示
OUTPUT B	M283	ランプ	OUTPUT B の ON/OFF を表示
OUTPUT C	M284	ランプ	OUTPUT C の ON/OFF を表示
OUTPUT D	M285	ランプ	OUTPUT D の ON/OFF を表示
OUTPUT E	M286	ランプ	OUTPUT E の ON/OFF を表示
OUTPUT F	M287	ランプ	OUTPUT F の ON/OFF を表示

- ⑤ アクチュエータ動作に関わる信号
 - (1) 軸選択 "D16 "

操作するシリンダの軸を選択します。

サンプルプログラムではビットスイッチ(" M80~M87 ")によって D16 に数値を入力していますが、直接 " D16 "に数値を入力してもかまいません。

サンプル画面 6< 軸選択 >

画面構成パーツ

名称	信号	属性	設定
軸選択	D16	数值入力	表示桁数 1 / HEX(1W)
0 軸選択	M80	スイッチ	モーメンタリ
1 軸選択	M81	スイッチ	モーメンタリ
2 軸選択	M82	スイッチ	モーメンタリ
3 軸選択	M83	スイッチ	モーメンタリ
4 軸選択	M84	スイッチ	モーメンタリ
5 軸選択	M85	スイッチ	モーメンタリ
6 軸選択	M86	スイッチ	モーメンタリ
7 軸選択	M87	スイッチ	モーメンタリ

(2) 原点復帰

D16 で選択されている軸の原点復帰を行います。
 画面作成時には"軸選択"→"原点復帰"となるようにしてください。(デ
 フォルトでは軸選択は"0"になっています。)

"**M461**"は D16 の原点復帰が完了しているかどうかを確認するビットになります。ON 原点復帰完了 / OFF 原点復帰未完了となります。

■7 (ベース画面) <ctc運転サンプ ⊠<br="" □="">サンプル7<原点復帰></ctc運転サンプ>
軸保許 原点復帰確認 ¹⁴² 年IN
N58 原点復帰
160

画面構成パーツ

名称	信号	属性	設定
軸選択	D16	数値入力	表示桁数 1 / HEX(1W)
原点復帰	M53	スイッチ	モーメンタリ
ZFIN	M461	ランプ	

(3) ポイント動作

D16 で選択されている軸のポイントを動作させます。
 画面作成時には、"軸選択"→ "ポイント動作選択"となるようにしてください。(デフォルトでは軸選択は"0"になっています。)

■ 8 (ペース画面) <ctc運転サンブ… th="" □="" 図<=""></ctc運転サンブ…>
サンブル8<ポイント実行>
軸は 翌6 が選択されています。
ポイント選択
198 191 192 198 194 195 196 1 2 3 4 5 6
M97 M98 M99 M189 M181 M182 M188
M104 M105

名称	信号	属性	設定 /内容
軸選択	D16	数值入力	表示桁数 1 / HEX(1W)
ポイント0選択実行	M90	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイント0に移動させます。
ポイント 1 選択実行	M91	モーメンタリ	OFF→ON で、D16 の軸番号で選択されている軸をポイント1 に移動させます。
ポイント2選択実行	M92	モーメンタリ	OFF→ON で、D16 の軸番号で選択されている軸をポイント2 に移動させます。
ポイント3選択実行	M93	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイント3に移動させます。
ポイント4選択実行	M94	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイント4に移動させます。
ポイント 5 選択実行	M95	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイント5に移動させます。
ポイント6選択実行	M96	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイント6に移動させます。
ポイント 7 選択実行	M97	モーメンタリ	OFF→ON で、D16 の軸番号で選択されている軸をポイント7 に移動させます。
ポイント8選択実行	M98	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイント8に移動させます。
ポイント9選択実行	M99	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイント9に移動させます。
ポイント A 選択実行	M100	モーメンタリ	OFF→ON で、D16 の軸番号で選択されている軸をポイント A に移動させます。
ポイント B 選択実行	M101	モーメンタリ	OFF→ON で、D16 の軸番号で選択されている軸をポイントB に移動させます。
ポイント C 選択実行	M102	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイントCに移動させます。
ポイント D 選択実行	M103	モーメンタリ	OFF→ON で、D16 の軸番号で選択されている軸をポイントD に移動させます。
ポイント Ε 選択実行	M104	モーメンタリ	OFF→ON で、D16の軸番号で選択されている軸をポイントEに移動させます。
ポイント F 選択実行	M105	モーメンタリ	OFF→ON で、D16 の軸番号で選択されている軸をポイントFに移動させます。
ポイント実行停止	M106	モーメンタリ	ポイント動作中のシリンダをその場で停止させます。

(4) JOG 操作

D16 で選択されている軸を手動で操作させます。 画面作成時には、"軸選択"→ "JOG 操作"となるようにしてください。 (デフォルトでは軸選択は"0"になっています。)

■ 9 (ペース画面) < サンプル9<	ctc道 ボイン	転サンプ ノト 実行	(= ī>		83
ジョグ運転	軸	Die			
M292 N58					
11293 ⁻¹¹⁸⁸ 低速	M60	前進	Met	後退	
11296 1189 高速				T	
				J	

名称	信号	属性	設定 /内容
軸選択	D16	数值入力	表示桁数 1 / HEX(1W)
手動インチング	M000		OFF の場合、手動動作は JOG 動作指定状態、ON の場合、手動動作はインチン
モード	M292	モーメンダリ	グ指定状態
手動高速指定状態	M293	モーメンタリ	OFF の場合、手動速度は高速指定状態、ON の場合、手動速度は低速指定状態
千動インチンガ	MEQ	エーハカリ	OFF→ON で、手動動作をインチング動作(ON)/JOG 動作(OFF)に切り替えます
于動インテンク	WDO	モーメンタリ	(オルタネート動作)。
手動 低速選択	M88	モーメンタリ	OFF→ON で、手動動作速度を低速に切り替えます。
手動 高速選択	M89	モーメンタリ	OFF→ON で、手動動作速度を高速に切り替えます。
王利治准化人	MGO	エーハカロ	ON でD16の軸番号で選択されている軸を前進端側に移動させ、OFFで停止しま
于動則延拍室	進指令 M60 モーメンタリ	モーメンタリ	す。
千利公沮七人	MG1		ON でD16の軸番号で選択されている軸を後退端側に移動させ、OFFで停止しま
于動仮返泊室	10101	モーメンダリ	す。

(5) ポイント編集

D16 で選択されている軸 のポイントの位置/速度/加速度/押付/回転量の設定を 行います。

画面作成時には、"軸選択"→ "ポイント選択"→ "編集"となるようにしてください。

(デフォルトでは軸選択/ポイント選択は"0"になっています。)

○ポイント選択

編集するシリンダのポイント("M62~M77")を選択します。 同時に選択されたポイントの数値パラメータを呼び出します。

名称	信号	属性	設定 /内容	
軸選択	D16	数値入力	表示桁数 1 / HEX(1W)	
毎年ポイントの選切		スイッチ	OFF→ONで、D18の編集対象ポイント番号に0を設定します。	
榊果小1 ント 0 選択	M02		またポイントのデータパラメータを読み込みます。	
毎年ポイント 1 遅切	MGO	フノッチ	OFF→ONで、D18の編集対象ポイント番号に1を設定します。	
神朱小1 ント 1 迭代	IVI03	ヘイツナ	またポイントのデータパラメータを読み込みます。	
<u>須住 ポイント 0 翌</u> 坦	MGA	フノッチ	OFF→ONで、D18の編集対象ポイント番号に2を設定します。	
編果小1 ント2 選択	M04	スイツナ	またポイントのデータパラメータを読み込みます。	
<u>須住 ポイント 0 翌</u> 坦	MGE	フノッチ	OFF→ONで、D18の編集対象ポイント番号に3を設定します。	
神朱小1 ント 3 迭代	INI00	ヘイツナ	またポイントのデータパラメータを読み込みます。	
毎年ポイントイ選切	MGG	フィッチ	OFF→ONで、D18の編集対象ポイント番号に4を設定します。	
福朱小イント 4 選択	WOO	×197	またポイントのデータパラメータを読み込みます。	
編集ポイントを選切	M67	フィッチ	OFF→ONで、D18の編集対象ポイント番号に5を設定します。	
桶来小月2153 医扒	10107	X197	またポイントのデータパラメータを読み込みます。	
毎年ポイントの遅切	MGO	フノッチ	OFF→ONで、D18の編集対象ポイント番号に6を設定します。	
福朱小イント 6 選択	WIUO	スイッチ	またポイントのデータパラメータを読み込みます。	
毎年ポイント7遅切	M69	スイッチ	OFF→ONで、D18の編集対象ポイント番号に7を設定します。	
福朱小1 ント 1 進代			またポイントのデータパラメータを読み込みます。	
<u>須住 ポイント 0 翌</u> 4	M70	スイッチ	OFF→ONで、D18の編集対象ポイント番号に8を設定します。	
神朱小1 ント 8 迭状			またポイントのデータパラメータを読み込みます。	
毎年ポイントの遅切	M71	スイッチ	OFF→ONで、D18の編集対象ポイント番号に9を設定します。	
神朱小イント 9 迭代	IVI / I		またポイントのデータパラメータを読み込みます。	
毎年ポイント A 選切	M70	フィッチ	OFF→ON で、D18 の編集対象ポイント番号に A を設定しま	
無果小イントA 選択	IVI / Z	スイッチ	す。またポイントのデータパラメータを読み込みます。	
毎年ポイント D 逸切	M70	フノッチ	OFF→ON で、D18 の編集対象ポイント番号に B を設定しま	
柵来小イント D 選択	10173	×197	す。またポイントのデータパラメータを読み込みます。	
炉住ポイントの 漫切	N474	フノッチ	OFF→ON で、D18 の編集対象ポイント番号に C を設定しま	
福来小イント 6 選択	IVI / 4	×197	す。またポイントのデータパラメータを読み込みます。	
炉住 ポイント D 凄切	M75	フノッチ	OFF→ON で、D18 の編集対象ポイント番号に D を設定しま	
福来 ホイント D 選択	IVI 75	×197	す。またポイントのデータパラメータを読み込みます。	
編集ポイントを選切	M76	フィッエ	OFF→ON で、D18 の編集対象ポイント番号に E を設定しま	
	10170	ヘイツナ	す。またポイントのデータパラメータを読み込みます。	
絙伸ポイント 臣 遠切	M77	7 スイッチ	OFF→ON で、D18 の編集対象ポイント番号に F を設定しま	
編集ホイント F 選択	M77		す。またポイントのデータパラメータを読み込みます。	

サンプル 10 選択後にサンプル 11~17 を行うようにしてください。

^{■1E (ペース画面) <ctc連転サンプル110pic< sub=""> サンプル編集選</ctc連転サンプル110pic<>}	☞> 【択		- • ×
位置編集	JPb	JPe 12	JPd 13
速度編集	JPe 14		
加速度編集	JPf 15		
押付編集	JP10 16	JP11	
			JPØ

○位置

D21 (2 ワード) に軸 (D16),ポイント (D18) にて選択され た位置情報があります。

D21(2ワード)を編集し、保存 "M79"を押すことでポイン トデータに数値が保存されます。

■B(ベー サンフ	ス画面) <ctc運転サンプ… <u="">□ □ □ □ ⊠ プル11<位置></ctc運転サンプ…>
	軸 99 ⁶ ボイント 99 ⁸ 位置 ⁹⁹³ ***.** mm
	M79 保存

画面構成パーツ

名称	信 号	属性	設定 /内容
軸	D16	モニタ	表示桁数 1 / HEX(1W)
ポイント	D18	モニタ	表示桁数 1 / HEX(1W)
位置	D21	数值入力	表示桁数 6 /DEC(2W)
保存	M79	スイッチ	モーメンタリ

○現在位置反映

"M78"を押すと位置データ D21 (2 ワード) に現在位置が 表示されます。その後 "M79"を押すと現在選択されている 軸のポイント データに表示されている位置データに保存され ます。

画面構成パーツ

名称	信号	属性	設定 /内容
軸	D16	モニタ	表示桁数 1 / HEX(1W)
ポイント	D18	モニタ	表示桁数 1 / HEX(1W)
位置	D21	数值入力	表示桁数 6 /DEC(2W)
保存	M79	スイッチ	モーメンタリ
現在値反映	M78	スイッチ	モーメンタリ

○絶対位置/相対位置 切替

シリンダのポイントデータはデフォルトでは絶対位置になって います。

"M54"押す度に絶対/相対を切り替えます。

"M300"がM54によってON/OFFしますので状態確認が取 れます。(OFF 時 絶対 / ON 時 相対)

	・絶対位置
	例えば 0 ポイントに-10mm と打つと
「	シリンダ原点から
軸 邪き ボイント邪き	-10mmの位置にどのような位置から
	でも移動します。
	現在値が-100mm → 0 ポイント押印
/六军 D21Jale state	→ シリンダは
1 <u>1/10</u> *****.** mm	-10mmの位置に移動します。
	・相対位置
	例えば 0 ポイントを-10mmの相対に
	設定します。するとどのような位置か
	らでも-10mm進みます。
	現在値が-100mm → 0ポイント押印
	→シリンダ け-110mmの位置に移動

→ 0 ポイント押印 動します。 を-10mmの相対に どのような位置か ます。 → 0ポイント押印 シリンダ は-110mmの位置に移動 します。

名称	信号	属性	設定 /内容
軸	D16	モニタ	表示桁数 1 / HEX(1W)
ポイント	D18	モニタ	表示桁数 1 / HEX(1W)
位置	D21	数值入力	表示桁数 6 /DEC(2W)
保存	M79	スイッチ	モーメンタリ
切替	M54	スイッチ	モーメンタリ
絶対/相対	M303	ランプ	

○速度

D23(2ワード) に軸 (D16),ポイント (D18) にて選択され た速度情報があります。

D23 (2 ワード)を編集し、保存 "M79"を押すことでポイン トデータに数値が保存されます。

画面構成パーツ

名称	信号	属性	設定 /内容
軸	D16	モニタ	表示桁数 1 / HEX(1W)
ポイント	D18	モニタ	表示桁数 1 / HEX(1W)
速度	D23	数值入力	表示桁数 6 /DEC(2W)符号なし
保存	M79	スイッチ	モーメンタリ

○加速度

D25(2 ワード) に軸 (D16),ポイント (D18) にて選択され た加速度情報があります。

D25(2ワード)を編集し、保存 "M79"を押すことでポイン トデータに数値が保存されます。

■ F (ベース画面) <ctc運転サンブ… □="" 図="" 図<br="">サンブル15<加速度></ctc運転サンブ…>
軸 №● ボイント№■ 加速度 [■] ╦.** G
¹⁷² 保存

画面構成パーツ

名称	信号	属性	設定 /内容
軸	D16	モニタ	表示桁数 1 / HEX(1W)
ポイント	D18	モニタ	表示桁数 1 / HEX(1W)
加速度	D25	数值入力	表示桁数 4/DEC(2W)符号なし
保存	M79	スイッチ	モーメンタリ

○押付

<モード>

ポイントデータ上の設定を押付モードか通常モードの切り替え を行います。

"M56"を押す度に切り替わります。モード変更した場合は "M79"を押さない限り反映されません。

また、M301のON/OFF 状態によって現在のモードが確認できます。

OFF : 位置決めポイント(デフォルト) ON: 押付モード

サン	ブル16<	押付>		• _ • _ () ()	
	軸 哭!	e ポ.	イント架	.8	
	mai L	017M50	押付		
		H79 保	存		
					JPe

画面構成パーツ

名称	信号	属性	設定
軸	D16	モニタ	表示桁数 1 / HEX(1W)
ポイント	D18	モニタ	表示桁数 1 / HEX(1W)
保存	M79	スイッチ	モーメンタリ
押付モード	M56	スイッチ	モーメンタリ
押付確認	M303	ランプ	

<設定>

軸 (D16),ポイント (D18) にて選択された押付の設定を行い ます。"M57"を押す度に"M302"が切り替わります。 "M302"は後退端 (OFF)/前進端 (ON)表示します。 "D37"に押付力の数値を%にて入力します。

設定完了後に"M79"を押すと保存されます。

■ 11 (ベース画面) サンプル17<	<ctc運転 〔押付設定</ctc運転 	サンブ [e 官>	- 0 %
軸 🕅		ポイント	<u> 9</u> 18
方向	超函	M302 1 後退期	
押付力	D37*	%	
	M79 保イ	Ŧ	JPe

名称	信号	属性	設定
軸	D16	モニタ	表示桁数 1 / HEX(1W)
ポイント	D18	モニタ	表示桁数 1 / HEX(1W)
保存	M79	スイッチ	モーメンタリ
方向切換	M57	スイッチ	モーメンタリ
方向確認	M302	ランプ	
押付力	D37	数值入力	表示桁数 3 / DEC(1W)符号なし

⑥ シリンダ/モータの状態信号

D16 で選択されている軸の状態信号を表示するビットと常にシリンダの状態 を表示するビットの両方を用意しています。"D78"はアラームが出たとき のアラームコードが表示されます。

名称	機能
PC1	目標位置番号入力
PC2	目標位置番号入力
PC4	目標位置番号入力
PC8	目標位置番号入力
CSTR	目標位置番号ストローブ入力
INH+	+方向回転禁止入力(OFF で禁止),原点復帰時の+方向原点センサ入力
INH-	-方向回転禁止入力(OFF で禁止),原点復帰時の-方向原点センサ入力
ILK	回転移動インターロック入力
PM1	目標位置番号完了出力
PM2	目標位置番号完了出力
PM4	目標位置番号完了出力
PM8	目標位置番号完了出力
PFIN	位置決め完了出力
ZFIN	原点復帰完了出力
ZONE	ゾーン信号出力
ALM	アンプ警報出力(正常時 ON)

サンブル18	<ステ-	-タス>		
軸 职6				
	[™] ₽С2 [™] ₽₩2 [™] ₽₽К	PC4 PM4 PFIN	PM8 ZFIN	
M468 ALM	₽7₽*			JPØ

サンプル18はD16の選択した軸の場合として紹介しましたが、

常に監視するビットも設けています。

下の信号マップを参考にしてください。

名称	"D16"軸	0 軸	1 軸	2 軸	3 軸	4 軸	5 軸	6 軸	7 軸
PC1	M448	M320	M336	M352	M368	M384	M400	M416	M432
PC2	M449	M321	M337	M353	M369	M385	M401	M417	M433
PC4	M450	M322	M338	M354	M370	M386	M402	M418	M434
PC8	M451	M323	M339	M355	M371	M387	M403	M419	M435
CSTR	M452	M324	M340	M356	M372	M388	M404	M420	M436
INH+	M453	M325	M341	M357	M373	M389	M405	M421	M437
INH-	M454	M326	M342	M358	M374	M390	M406	M422	M438
ILK	M455	M327	M343	M359	M375	M391	M407	M423	M439
PM1	M456	M328	M344	M360	M376	M392	M408	M424	M440
PM2	M457	M329	M345	M361	M377	M393	M409	M425	M441
PM4	M458	M330	M346	M362	M378	M394	M410	M426	M442
PM8	M459	M331	M347	M363	M379	M395	M411	M427	M443
PFIN	M460	M332	M348	M364	M380	M396	M412	M428	M444
ZFIN	M461	M333	M349	M365	M381	M397	M413	M429	M445
ZONE	M462	M334	M350	M366	M382	M398	M414	M430	M446
ALM	M463	M335	M351	M367	M383	M399	M415	M431	M447

シリンダ/モータの状態名称と信号マップ(属性は全てランプです。)

例)全軸の原点復帰完了確認を一覧で表示する場合

⑦アラームに関わる信号

○ "M52"は現在出ている軸のみ解除をおこないます。

解除後に他のシリンダにエラーがある場合は次のエラー表示をします。 エラーがない場合は

" D79 " → " 0 " " D80 " → " 0 " " D82 " → " F " " D78 " → " 0 " と表示されます。

画面構成パーツ

名称	信号	属性	設定
CTC アラームコード	D79	モニタ	表示桁数 4 / HEX(1W)
アラーム発生工程	D80	モニタ	表示桁数 4 / HEX(1W)
シリンダアラーム軸	D82	モニタ	表示桁数 4 / HEX(1W)
シリンダアラームコード	D78	モニタ	表示桁数 4 / HEX(1W)
アラーム解除	M52	スイッチ	モーメンタリ
アラーム確認	M295	ランプ	

☆CTC_アラームコード

エラーコード	内容	原因	対策
正常	-	-	-
1	軸が認識できない。	①軸番号設定ができていない。 ②信号線が接続されていない。	①軸番号設定ツールを用いて 設定を行ってください。 ②信号線の接続を確認してくだ さい。
2	シリンダ/モータに異常 があります。	シリンダ/モータのアラー	ムコードを確認ください。
3	プログラムサイクルタイ ムオーバー	設定した時間にきてもプログラ ムが終了しない場合にエラーと なります。	プログラムの見直しを行ってくだ さい。 または、設定時間の見直しを 行ってください。 機器に異常がないか確認してく ださい。
4	サブプログラムエラー	サブプログラム設定エラー	メイン→サブ→サブ→サブと3度 ジャンプするとエラーとなります。 メイン→サブ→サブと2度ジャン プするまでならば設定可能で す。
5	拡張ページ設定エラー	拡張できないページが設定され ています。	拡張ページのリミットは接続され ている軸数によって変わりま す。 8軸 6ページ 7軸 7ページ 6軸 8ページ 5軸 10ページ 4軸 12ページ 3軸 16ページ
6	工程タイムオーバー	設定した時間にきても工程が終 了しない場合にエラーとなりま す。	プログラムの見直しを行ってくだ さい。 または、設定時間の見直しを 行ってください。 機器に異常がないか確認してく ださい。

☆シリンダ/モータ_アラームコード

エラーコード	内容	原因	対策
正常	-	-	-
B0、B1	データエラー	設定値の異常	設定ツールにてデータを初期化 してください。
B8、B9	エンコーダエラー	 アクチュエータが拘束されている。 アンプーモータ間の配線異常 アクチュエータの故障 	①②の異常がなければ、③の 可能性が高い為 交換/修理を行う必要がありま す。
BE	基準位置エラー	①ILKがOFF ②サーボモータ時に起きたとき は使用しているセンサの異常が 考えられます。	①ILK信号の確認 ②センサの配線、信号の確認を 行ってください。
C0、C1		お問い合わせください。	2
D0	電源異常	印過電圧が過大です。	仕様範囲の電圧にしてください。
D1	回生電圧異常	 ①印過電圧が過大です。 ②シリンダにかかる負荷要因が 仕様範囲外の可能性がありま す。 	 ①仕様範囲内の電圧にしてください。 ②装置の見直しを行い、シリンダへの負荷を軽減してください。 また、加速度を落とすなどタクトタイムの見直しも考慮してください。
D8	カウンタ異常	シリンダがロックされている。	装置、ブレーキの異常がないか 確認してください。
E0	過負荷	 アクチュエータが拘束されている。 	シリンダに接続している負荷要 因を取り除いてください。
E8、E9、EA	信号断線	 ①エンコーダケーブル未接続 ②エンコーダケーブル内部断線 ③アクチュエータの故障 ④アンプの故障 	 ①②の異常がなければ、③、④ の可能性が高い為 交換/修理を行う必要があります。
F8	E2PROMサムチェックエラー	アンプの故障	アンプの交換を行う必要があり ます。

☆CTC77_タッチパネル の信号説明 <応用編> ①画面に全軸の現在位置データを表示させたい場合

■ 15 (ベース画面) <ctc運転サンプ p="" □="" ▼<=""> サンブル21<位置情報></ctc運転サンプ>	現在位置は" D40 ~ 示されます。
各軸現在位置 0軸 ¹ 韓 ¹ 韓 ¹ 韓 ² 葉**.** 2軸 ¹ 章 ² 葉**.** ² 軸 ¹ 章 ² 葉**.** ¹ 章 ¹ 章 ² 葉**.** ¹ 章 ¹ 章 ² 葉**.** ¹ 章 ¹ 章	0 軸 D40 (2 ワード) 1 軸 D42 (2 ワード) 2 軸 D44 (2 ワード) 3 軸 D46 (2 ワード) 4 軸 D48 (2 ワード) 5 軸 D50 (2 ワード) 6 軸 D52 (2 ワード) 7 軸 D54 (2 ワード)

②単位切替

" D91 " ~ " D98 "

サンプルプログラムはモータ/シリンダとどちらをつなげるか不明なため 繋げた機器によって単位変更が行われるようになっています。

"D91~D98"が単位を切り替えるようにしています。

例えば0軸にモータをつなげると D91に1の数字が入ります。

数字は 0~3 が入ります。内容は下記のようになります。

"0" 接続なし

"1"モータ接続

"2"シリンダ接続

"3" 接続はされているが設定不明の場合

D54 "で表

③拡張ページの有効/無効の確認

" M304 "(ランプ) OFF (拡張ページ無効) / ON (拡張ページ有効)

■ 16 (ベース画面) <ctc運転サンプ th="" 👝="" 💷="" 💽<=""><th></th></ctc運転サンプ>	
サンプル22<拡張ページ有効/無効>	
j1304	
拡張ページ無効	

拡張ページが有効の場合 "D17"にページを入力します。

位置変更する場合

軸 "D16" を選択します。次に拡張ページ "D17"を選択します。

その後 サンプル画面9のポイント選択を行うと、拡張ページの情報が読み込まれます。

位置データは" D21"、速度データは" D23"に格納されます。

その後、位置を変更したい場合は" D21 "を編集して、" M79 " で保存をおこなってください。

④拡張ページによる位置データの変更方法例

(1) 軸 "D16"を入力します。 (2) 拡張ページ "D17"に入力します。

M304=	+순 권	E 🔊		×±	**	
	1/451				<u>X)]</u>	
D17	C	D	E	F	ESC	
*	8	9	A	В	CLR	
	4	5	6	7	BS	6 125270
	0	1	2	3	ENT	JP1

(3) 編集するポイントを選択

(4) 位置/速度を編集し 保存(M79) 押印

■ 19 (ベース画面) <ctc運転サンプ th="" 👝="" 💷="" 🛃<=""><th>🗐 1A (ベース画面) <ctc運転サンプ th="" 👝="" 💌<="" 💿=""></ctc運転サンプ></th></ctc運転サンプ>	🗐 1A (ベース画面) <ctc運転サンプ th="" 👝="" 💌<="" 💿=""></ctc運転サンプ>
サンブル23<拡張 ポイント編集選択>	サンブル23<拡張 位置、速度編集>
軸 🍱 旅張ページ 🕮	軸 №1% 拡張ページ№1% ポイント№8
ポイント選択	位置 PR#**.** mm
Mez Mez Mez Mez Mez Mez Mez U 1 2 3 4 5 6	速度 [▶] द्दि***.*** mm/sec
Mey Mzg Mzg Mzg Mzg Mzg Mzg	HZ2
M76 H77	保存 上 日 日 日 日 日 日 日 日 日 日 日 日 日

 $(1) \rightarrow (2) \rightarrow (3) \rightarrow (4)$ の流れで拡張の編集を行うように作成してください。保存が 押されると拡張のデータが更新されます。

拡張ページについて

CTC-77 では、CTC-77 の不揮発性メモリを用いてポイント数 16 点の位置決めポイントを複数 ページ持つことができます。これによって各軸の位置決めポイント数を最大 16 点 × 16 ページ まで拡張することができます。

ページ番号0は、シリンダ/サーボモータが本来持っている基本ポイントデータであり、ページ 番号が1以上の療育は、CTC-77によって拡張されている拡張ポイントデータです。拡張ポイ ントデータは、目標位置と速度指令のみを変更することができ、拡張ポイントのその他の項目 は、基本ポイントデータの同じポイント番号の内容が使用されます。

CTC-77 で制御する軸数が4軸以上の場合は、使用可能なページ数に関して下記のような制約があります。

1~3 軸	最大 16 ページ/軸
4 軸	最大 12 ページ/軸
5 軸	最大 10 ページ/軸
6 軸	最大8ページ/軸
7 軸	最大 7 ページ/軸
8 軸	最大 6 ページ/軸

出荷設定の状態では、位置決めポイント数拡張機能は無効になっています。 詳細については "CTC-77 超簡単コントローラ 取扱説明書"の

"7.5.位置決めポイント数拡張機能"を参照してください。

⑤途中続行の有効/無効の確認

"M305"(ランプ) OFF (途中続行無効) / ON (途中続行有効)

■ 1B (ペース画面) <ctc運転サンプ 0<br="" □="">サンプル24<途中続行有効/無効></ctc運転サンプ>	
途中続行有効]
	јра

途中続行機能について

CTC-77 では、SQSTP 信号を ON にしてプログラムの実行を中断した場合の中断したときのプログラムの実行状態を記憶しておき、その後 SQSTR 信号を ON にしてプログラムを実行する時に、プログラムが中断された状態に戻って途中から実行を開始することができます。

詳細については" CTC-77 超簡単コントローラ 取扱説明書"の

"7.6. プログラム実行を SQSTP 信号 ON にて中断した後の続行機能"を参照してください。

⑥CTC プログラムが動作していない状態で OUT 信号の確認を行う場合
 サンプル 25 の場合、ランプの下にあるボタンを押すと上のランプが ON し、CTC 本体も
 ON します。バルブの確認やリレーの確認を行う時に使用してください。

名称	信号	内容	信号	内容
OUTPUT 0	M272	OUTPUT 0の ON/OFF を表示	M140	OUTPUT 0 の ON/OFF を切替
OUTPUT 1	M273	OUTPUT 1 の ON/OFF を表示	M141	OUTPUT 1 の ON/OFF を切替
OUTPUT 2	M274	OUTPUT 2 の ON/OFF を表示	M142	OUTPUT 2 の ON/OFF を切替
OUTPUT 3	M275	OUTPUT 3 の ON/OFF を表示	M143	OUTPUT 3 の ON/OFF を切替
OUTPUT 4	M276	OUTPUT 4 の ON/OFF を表示	M144	OUTPUT 4 の ON/OFF を切替
OUTPUT 5	M277	OUTPUT 5の ON/OFF を表示	M145	OUTPUT 5 の ON/OFF を切替
OUTPUT 6	M278	OUTPUT 6 の ON/OFF を表示	M146	OUTPUT 6 の ON/OFF を切替
OUTPUT 7	M279	OUTPUT 7 の ON/OFF を表示	M147	OUTPUT 7 の ON/OFF を切替
OUTPUT 8	M280	OUTPUT 8 の ON/OFF を表示	M148	OUTPUT 8 の ON/OFF を切替
OUTPUT 9	M281	OUTPUT 9の ON/OFF を表示	M149	OUTPUT 9 の ON/OFF を切替
OUTPUT A	M282	OUTPUT A の ON/OFF を表示	M150	OUTPUT A の ON/OFF を切替
OUTPUT B	M283	OUTPUT B の ON/OFF を表示	M151	OUTPUT B の ON/OFF を切替
OUTPUT C	M284	OUTPUT C の ON/OFF を表示	M152	OUTPUT C の ON/OFF を切替
OUTPUT D	M285	OUTPUT D の ON/OFF を表示	M153	OUTPUT D の ON/OFF を切替
OUTPUT E	M286	OUTPUT E の ON/OFF を表示	M154	OUTPUT E の ON/OFF を切替
OUTPUT F	M287	OUTPUT F の ON/OFF を表示	M155	OUTPUT F の ON/OFF を切替

信号" M156 " を押印すると すべての OUTPUT は OFF します。

*M140~M156 はモーメンタリ設定です。

⑦遅延タイマについて

CTC プログラムに使用しているタイマをタッチパネルから操作することができます。

(但し、繰り返し回数やタイマ以外の機能になっている場合は変更できません。)

"D109"工程選択 変更するタイマの工程番号を入力します。

"D110" D109 で選択された工程のタイマの設定値を確認できます。

"D111"変更したいタイマ値を入力ます。

入力後"M55"を押すとタイマの値は変更されます。

□ 1D (ベース画面) <ctc運動< th=""><th>はサンプ 😑 😐 💌</th></ctc運動<>	はサンプ 😑 😐 💌
サンブル26<タイ	マ設定>
工程選択	192 ****
現在の設定値	P118.***sec
変更値の入力	RIII *** sec
M55- タイマ3	变更 JP0
£	

画面構成パーツ

名称	信号	属性	設定
工程選択	D109	数值入力	表示桁数 4 / DEC(1W)符号なし
現在の設定値	D110	モニタ	表示桁数 5 / DEC(1W)
変更値の入力	D111	数值入力	表示桁数 5 / DEC(1W)符号なし
タイマ変更	M55	スイッチ	モーメンタリ

⑧CTC のプログラムを連続で起動させたい場合

M107 を押すと間欠運転か連続運転か切り替わります。

また M107 を押す度に M303 が切り替わるので現在の状態を確認できます。 M303 OFF 間欠 / ON 連続

名称	信号	属性	設定
START	M50	スイッチ	モーメンタリ
STOP	M51	スイッチ	モーメンタリ
切替	M107	スイッチ	モーメンタリ
間欠/連続 確認	M303	スイッチ	モーメンタリ